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Abstract-The effect of buoyancy forces on the steady, laminar, plane flow over a horizontal plate is 
investigated within the framework of a first-order boundary layer theory, taking into account the 
hydrostatic pressure variation normal to the plate. An exact similarity solution is given for the case of a 
wall temperature that is inversely proportional to the square root of the distance from the leading edge. 
Remarkably, such a solution does not exist if the buoyancy parameter is smaller than a certain critical 
value, which is negative (decelerated flow) but not yet small enough to satisfy the separation criterion of 
vanishing shear stress at the wall. Although the wall temperature is different from the free-stream 
temperature, there is no local heat transfer at the wall except in the singular point at the leading edge. 
The total heat transfer is finite, independent of the plate length, and is calculated by applying the heat flux 
equation. The displacement thickness is also given. It is negative if the plate is heated sufficiently strongly. 
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NOMENCLATURE I. INTRODUCTION 

Archimedes number, equation (4); 
specific heat capacity ; 
reduced stream function, equation (10); 
gravity constant ; 

buoyancy parameter, Ar/,,/%; 

value of x where T, - T, = T* ; 

plate length; 
Landau’s order symbol; 
dimensionless pressure difference, 
equation (2) ; 
Prandtl number; 
pressure ; 
heat exchanged between plate and fluid ; 
Reynolds number, u, L/v; 

Stanton number, equation (17); 
temperature; 
characteristic temperature difference 
between plate and free stream; 
dimensionless velocity components, 
equation (2); 
velocity components in x,y-directions ; 
dimensionless Cartesian coordinates, 
equation (2); 
Cartesian coordinates. 

IN CLASSICAL boundary layer theory, body forces 
such as buoyancy forces are taken into account only 
with respect to their tangential component. Force 

components normal to the surface are neglected as 

higher-order terms, with the result of no pressure 
variation across the boundary layer. 

There are, however, flow phenomena which can- 

not adequately be described by means of the classical 
boundary layer equations. Examples are the bending 
of a hot, non-vertical jet in a gravity field, and the 
influence of buoyancy forces on the flow over a 
heated or cooled horizontal plate. In the latter 
problem the body forces normal to the surface may 
even result in separation of the boundary layer flow. 

A possible way of attacking problems of that kind 

is provided by second-order boundary layer theory 
[l]. The normal component of the buoyancy force, 
like streamline curvature and displacement, contri- 

butes to a second-order pressure gradient normal to 
the surface. Obviously, this perturbation theory with 
respect to large Reynolds numbers is only correct if 
the buoyancy term remains small in comparison with 
the first-order terms. Since the buoyancy term is 
connected with a dimensionless parameter (Froude 
number or Archimedes number), and since this 
parameter is independent of the Reynolds number, 
the assumption of a sufficiently small buoyancy term 
is not always satisfied. Furthermore, for free jets as 
well as for the boundary-layer at a horizontal plate, 
the relative importance of buoyancy forces as 
compared to inertia forces typically increases with 
increasing distance from the orifice or leading edge, 
respectively. As a consequence, the perturbation 
procedure breaks down at a certain distance down- 

Greek symbols 

8, thermal expansivity ; 
s*, displacement thickness; 

% similarity variable, equation (10); 

0, (T- T,)IT*; 
3, reduced temperature difference, 

equation (10) ; 
V, kinematic viscosity; 

P> density ; 
*> dimensionless stream function, equation (6). stream, as can be seen, for instance, by inspection 

Subscripts 
of the solutions presented in [ 11. 

In the particular case of a curved free jet the 

W, at the wall ; complications involved with the second-order- 
a, in the free stream. boundary-layer theory can be evaded by applying 
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the conservation equations in integral form and 
using ad hoc assumptions for the velocity and 
temperature profiles (integral method [2,3]). As far 
as the boundary layer flow over a horizontal plate is 
concerned, however, the pressure variation normal to 
the wall is essential for a representation of the 
buoyancy effects. If, in this case, the buoyancy term is 
large as compared with the curvature term, a 
modification of the first-order boundary layer theory 
is necessary and possible. 

Approximate solutions of the modified first-order 
boundary layer equations have already been ob- 
tained by several investigators. Perturbation series in 
terms of the distance from the leading edge [447] are 
valid only for small buoyancy effects and are 
therefore subject to the same limitations as the 
results of the second-order boundary layer theory 
[l]. Hieber’s work [7] contains also expansions for 
very large distances from the leading edge (buoyancy 
dominated region). The limiting cases of very small 

and very large Prandtl numbers have been studied 
by the method of matched asymptotic expansions 
[8]. Most recently, approximate solutions for quite a 

large range of the buoyancy parameter have been 
obtained by local similarity and local non-similarity 

methods [9]. Apparently, exact solutions are not 
available so far. It is the purpose of this investigation 
to fill that gap and give an exact similarity solution. 

2. BASIC EQUATIONS 

Consider a horizontal flat plate aligned parallel to 
a uniform free stream with velocity 11,. density pZ, 
and temperature T,. The plate is maintained at a 
certain temperature Tw which may depend on the 
longitudinal coordinate s according to the relation 

T,,- T, = T*H,,,(xjL), with O,(I) = 1. (1) 

T* represents a characteristic temperature difference 
between plate and free stream, and L is the value of 
the x-coordinate where r,- T, = T*. If the wall 
temperature is constant, L can be chosen arbitrarily. 

The flow over the plate is considered to be plane, 
laminar, and steady. Constant transport coefficients 
are assumed, and the Boussinesq approximation is 
applied. 

A Cartesian coordinate system .x,x is used with the 
origin at the leading edge of the plate, and the 
velocity components in Y- and !‘-direction are 

denoted by u and 11. respectively. Furthermore, the 
dimensionless variables, 

x = r/L; Y = JR&L; 

u = u/u I: v = && cc) (2) 

fJ = (T-T,)/T*; P = (p-pr),'ppu;_, 

are introduced, where Rr = u, Ljv is the Reynolds 
number and the pressure is referred to p,. i.e. the 
hydrostatic pressure in the undisturbed fluid. Apply- 
ing now the boundary layer approximation in the 
common manner but with the modification that the 
pressure varies across the boundary layer and is 

equal to the hydrostatic pressure in the temperature- 
disturbed fluid, the following boundary layer 
equations are obtained: 

W-1 

l?P 
-= KO; 
?Y 

“~++;!?. (3d) 

Pr stands for the Prandtl number, and the buoyancy 
parameter K is related to the Archimedes number Au 
according to 

K = ArlJRe, Ar = gL/l, T*/u2,, (4) 

where 9 is the gravity acceleration, and p,, is the 
thermal expansivity of the fluid in the undisturbed 
state. The signs in equation (3~) have been chosen for 
the Row ahoce the plate; if the flow below the plate 
were considered K should be replaced by -K in 
equation (3~). 

The boundary conditions in dimensionless form 
are 

U=V=O,O=O,v(X), on Y=O,X>O; (5a) 

U=l,O=P=O, as Y+x. (5b) 

Boundary layer theory is based on an asymptotic 
expansion for Re + x. Since Ar is an independent 

parameter, the following cases are to be 
distinguished: 

1. Ar = O(1): The right-hand side of equation (3~) 
is of order O(Rr-“*), i.e. of the same order of 
magnitude as the second-order terms stream-line 
curvature and displacement. Hence buoyancy effects 
can be-and should be-included in a second-order 
boundary layer theory ; see [ 11. 

II. Ar + x, such that K -+ 0: The right-hand side 
of equation (3~) is very large compared with the 
second-order boundary layer terms but very small 
compared with the first-order terms. This case is 
included in the second-order boundary layer theory 

[Il. 
III. Ar -+ ‘~1 such that K = O(1): The right-hand 

side of equation (3~) is part of a first-order boundary 
layer theory. It is this case which is to be considered 
in the present paper. 

IV. Ar + xi such that K + a: Free convection is 
dominant. The correct solution has been given in 

[‘Ol. 
If the wall temperature is constant, the boundary 

conditions do not contain any characteristic length. 
In this special case the length L can be chosen such 
that K = 1. With this choice of L, the regime of 
equal importance of free and forced convection is 
given bv X = O(1). The case of constant heat flux at 
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the plate surface can be treated in an analogous where primes denote differentiation with respect to the 
manner. Since neither of the two problems is similarity coordinate rl. From the boundary conditions 
accessible to an exact similarity solution we will not (8a) and (8b) we obtain 

_ go into further details here. 

3. SIMILARITY SOLUTION 

,f(O) = .f”(O) = 0, f’(m) = 1; (124 

The continuity equation (3a) is satisfied by 
introducing a stream function $ with: 

9(O) = 1; 

9(co) = 0. 

U2b) 

(12c) 

u = **> v= -$x. (6) 
Subscripts X and Y indicate partial derivatives. 
Furthermore the pressure is eliminated by integrat- 
ing the normal momentum equation (3~) with 
respect to Y and using the boundary condition P = 0 
as Y + cc. From the tangential momentum equation 
(3b) and the energy equation (3d) we obtain the 
following system of equations for $ and 0: 

’ 72 
*Y*XY-*,Y$YY-K O,dY = tivvu; Ua) 

1 

(7b) 

The boundary conditions are: 

$ = $y = 0, 6 = Q,(X), on Y = 0, X > 0; (8a) 

$r= l,Q=O, as Y+co. (8b) 

Looking now for similarity solutions by one of the 
well-known methods (see e.g. [ 11,121) we find that a 
similarity solution is possible if the wall temperature 
distribution is of the form 

6 =X-‘/Z, W (9) 

In this case the similarity transformation 

11= yx-'12; 

ti = x"2fo), fl = 0,3(q), 
(10) 

yields the system of equations 

2f’“‘+,fl”+ Kp9 = 0; (lla) 

; w+fY+,f’s = 0, (lib) 

Note that not only the partial derivatives have been 

reduced to ordinary derivatives but also the integral 
appearing in equation (7a) has been eliminated. 

Equation (11 b) can be integrated at once. Using the 

boundary condition (12~) we obtain 

; 9’+,fS = 0. (13) 

This first-order differential equation can be formally 
integrated to give 

9 = exp(-G i,’ fdq), (14) 

where the boundary condition (12b) has already been 
satisfied. From the numerical point ofview, however, it 

is preferable to use equation (13) instead of 
equation (14). 

4. NUMERICAL RESULTS AND DISCUSSION 

The system of ordinary differential equations (1 la) 

and (13) subject to the boundary conditions (12a) 
and (12b) has been solved numerically by two 
different methods. Figures 1 to 3 show results which 
have been obtained by the common shooting 
method. The case Pr = 1 has also been investigated 

by the method of parametric differentiation (see e.g. 
[12,13]). In general, the results of both methods 
agreed satisfactorily, but when using the method of 
parametric differentiation for negative values of K 
(corresponding to an adverse pressure gradient) an 
extremely small step size was necessary in order to 
obtain the required accuracy. 
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b=-0.0787 

c=-0.1099 
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C b 'a 

K 
FIG. 1. Dimensionless wall shear stress, f”(O), as a function of the buoyancy parameter K = Ar/JRe for 
various Prandtl numbers. For Pr = 0.5, 1.0, and 2.0, respectively, there are no solutions for K-values 

smaller than the critical values -0.0577, -0.0787, and -0.1099. 
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FIG. 2. Tangential velocity profiles as a function of the 
similarity variable n for various values of the buoyancy 

parameter K. 
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FIG. 3. Temperature profiles as a function of the similarity 
variable n for various values of the buoyancy parameter K. 

Figure 1 shows f”(O), which is proportional to the 
wall shear stress, as a function of the buoyancy 
parameter K for three different Prandtl numbers. At 
K = 0 (no buoyancy) the Blasius value f”(0) = 0.332 
is obtained, of course. If K > 0 (i.e. plate temperature 
larger than free-stream temperature) there is a 
favorable pressure gradient above the plate due to 
buoyancy effects and the wall shear stress is larger 
than in the non-buoyant case. If K < 0 (i.e. plate 
temperature smaller than free-stream temperature) 
the opposite is true. 

One might expect that at a certain negative value 
of K the separation condition f”(O) = 0 would be 

satisfied. This is not the case, however. It can be seen 
from Fig. 1 that below a certain critical value of K 
there is no similarity solution of the boundary layer 
equations as used in this paper. The critical values 
depend on the Prandtl number and are, according to 
our calculations, given by K = -0.0517, -0.0787. 

and -0.1099 for Pr = 0.5, 1.0, and 2.0, respectively. 
It appears that these results of an exact solution 
explain why convergence of the truncation method 
used in [9] could not be attained for Gr,/Rel” 
smaller than -0.03, where Gr, and Re, are, 
respectively, the local Grashof and Reynolds 
numbers. 

Typical velocity and temperature profiles are 
shown in Figs. 2 and 3, respectively. The Prandtl 

number is equal to 1 in all cases. As far as the 
negative value of K is concerned, the velocity and 
temperature profiles just before breakdown of the 
similarity solution are given. 

It is interesting to note that 9’(O) = 0 for all values 
of K, cf. Fig. 3. This result, which follows directly 
from equation (13) together with the boundary 
condition (12a), indicates that there is no local heat 
transfer at the plate surface for all X > 0. Neverthe- 

less, although dissipation has been neglected, the 
temperature of the fluid is changed during the flow 
process. The paradox is resolved by recalling that the 
similarity solution requires a singular behaviour of 

the wall temperature at X = 0, cf. equation (9). Thus 
all the heat necessary to change the fluid temperature 
must be transferred in the singular point X = 0, 

which is the leading edge of the plate. 
Consider a plate of length 1 (not to be confused 

with L, i.e. the characteristic length of the wall- 
temperature distribution). In order to circumvent the 
difficulties linked to the singularity at the leading 
edge the total heat transfer Q, is determined with the 
help of the heat flux equation 

Q, = P~>c,, ; [(T- T,)ul.=,d?, (15) 

where cp is the specific heat capacity at constant 
pressure. Introducing the dimensionless variables of 
equation (2) and applying the similarity transfor- 
mation (lo), we obtain the relation 

3f“dq = const, (16) 

where the Stanton number 

St = Qw,/p,u,c,T*L, (17) 

is refekred to the characteristic length of the wall- 
temperature distribution. According to equation (16) 
the Stanton number is independent of the plate 
length 1, thereby confirming the statement that the 
total heat transfer takes place at the leading edge. 
Numerical results for the Stanton number are shown 
in Fig. 4. 
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FIG. 4. Total heat transfer at the plate (Stanton number St) as a function of the buoyancy parameter K 

-for various Prandtl numbers 
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FIB;. 5. Effect of buoyancy parameter K and Prandtl number Pr on the displacement thickness 6*. 

Finally, the displacement thickness 6* can be 
calculated from the relations 

= J ‘” lim [~-f‘(q)]. (18) 
u, 3,-x 

The limit value is given in Fig. 5. It is interesting to 
note that the displacement thickness is negative for 
relatively large values of the buoyancy parameter K, 
i.e. if the plate is heated sufficiently strongly. This is a 
consequence of local velocities that are larger than 
the free stream velocity, cf. the velocity profile for 

K = 0.5 in Fig. 2. 
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Noteadded in pro+At the suggestion of participants of the 
GAMM-Conference 1979 in Wiesbaden, Germany. it was 

intersects theline/‘” = Oat K = --Q.O50(separationpoint). 
Whether the second branch is a stable solution and Can 

found thatthesolut~on is not unique for values ofI( slightly 

larger than thecritical value. A second branch ofthe solution 
~x~~rnentally ~r~liz~atapiat~thatisstronglyh~atedat 

the leading edge but otherwise isolated needs further 
shown in Fig. 1 originates in the critical point and. for Pr = I, investigation. 

UNE SOLUTION DE SIMILITUDE POUR LA CONVECTION MlXI’E SUR UNE PLAQUE 
HORIZONTALE 

R&m&On &die I’effet des forces d’Archimede sur I’tcoulement permanent, laminaire et plan sur une 
plaque horizontale, dans le cadre d’une thtorie de couche limite du premier ordre, prenant en compte la 
variation de pression hydrostatique normalement d la plaque. Une solution de similitude exacte est 
don&e dans le cas d’une tempirature de paroi inversement proportionnelle $ la racine carrte de la 
distance au bord d’attaque. Une reelle solution n’existe pas si le param&re de convection naturelle est 
infkrieur ;i une valeur critique’ laquelle est nkgative (i-coulement d&lirir), mais pas suffisamment petit 
pour satisfaire le crittre de separation, d’annulation de la contrainte ri la paroi. Bien que la temptrature 
pari&ale est difftrente de cellc de l’&coulement libre, it n’y a pas de transfert thermique local B la paroi, sauf 
au point singulier du bord d’attaque. Le transfert thermique total est fini, indtpendant de la longueur de 
la plaque, et il est calcult: par application de I’kquation du flux thermique. On donne aussi l’ipaisseur de 

d&placement. Elle est negative si la plaque est chauffit suffisamment fortement. 

EINE AHNLIcHKEITsL&uNG FOR DIE STROMUNG LANGS EINER HOR~ZONTALEN 
PLATTE BE1 KOMBlNIERTER ERZWUNGENER UND FREIER KONVEKTION 

Zusammenfassung-Der EinfluB statischer Auftriebskrif’te auf die station&ire, laminare. ebene StrGmung 
ILngs einer horizontalen Platte wird im kihmen einer Grenzschichtbeorie erster Ordnung untersucht. 
wobei die hydrostatis~he Druck~nderung normal zur Platte zu ber~cksichtigen ist. Eine exakte 
~hnlichkeitsl~sung wird fi.ir den Fall angegeben, dal3 sich die Wandtemperatur umgekehrt proportional 
zur Wurzel aus dem Abstand von der Vorderkante Indert. Bemerkenswerterweise existiert eine solche 
Liisung nicht, wenn der Auftriebsparameter kleiner als ein bestimmter kritischer Wert ist ; dieser kritische 
Wert ist negativ (verziigerte StrGmung). aber noch nicht hinreichend klein, urn das Abliisekriteriuni 
verschwindender Wandschunspannung zu erfiillen. Obwohl sich die Wandtemperatur von der 
Temperatur der ungestiirten Strtimung unterscheidet, gibt es keinen iirtlichen Wsrmedbergang an der 
Wand, ausgen~men den singulgren Punkt an der Vorderkante. Der gesamte W~rme~bergang ist 
endlich, unabh~ngig von der Plattenlgnge und wird mittels der W~~estromglei~hung berechnet. Auch 

die Verdrlngungsdicke wird angegeben. Sie ist negativ, wenn die Platte hinreichend stark geheizt wird. 

ABTOMOAEJIbHOE PELUEHME 3AjJAYM 0 CMElllAHHOti CBO6O&HO@ M 
BbIHY~~~HHO~ KOHBEK~~~ HA ~OP~3OHTAJlbHO~ IUIACTMHE 

AHHOTPUHU- B np~~~n~~~~~ reoptlrt norpawworo cnoa nepeoro nopsnKa ucc:~e~ye-rcn B;IMI(HHC 

nona&wbtx cnn Ha cTauMowapnoe, :~awwap~oe. nnocKoe Te9eHHe Ha ropki30HTajlbHoR nnacrwe 

c yYtiTOM wweHeHm3 rkmpocTaTwecKor0 ,laB;leH,,R no HOpMan,, K n:lacTwe. HaiineHo TOYHOe 

aBTOMOLEJlbHOe ~meHW7 Ll."R C:ly'+afl, KOrUa 3Ha',eHHe TeMnepaTypbl CTeHKll A3MeHReTCR 06paTHO 

flpOnOpIlHOHa~bH0 KOpNlO KBUpaTHOMy paCCTOXHHS OT nepWHeil KPOMKH. CneiIyeT OTMeTHTb. 410 

TaKoe pemeH3+e tie za3meTca cnpasenimabw a TOM cnysae. ecnu aenwiana cao6onnoKo~9eKT~aHoro 

napaMeTpa Metibme on~~enelinoro KpaTwtecKoro 3Haqeniiit (3aTopMomewoe Terenrze), NO He CTOJI~ 

MiMblM. YTO6bl YAOB~eTaOp~~b KpifTepHto OTjlbIBa nOTOKa npH CT~M~meMC~ K Hy.Xo "anpa~~~~~ 

CflaWa Ha CTeHKe. XOTR TeWepaTypd CTeHKM OTnRYHa OT TeMrXpdTypbl CBO60nHOrO IIOTOKd. 

,,OKa.VbHblii TennOO6M'Zti Ha CTeHKe OTCyTCTayeT la NCK,IK)qeHHeM CMHryJlRpHOii TOYKM Ha nepe,!(H& 

KpOMKe. BeJiesNna CyMMapHOr-0 leIL'IOO6MeHa RBJlReTCR KOHeVHOii. He 3aatiCHT OT n_',HHb, n,laCTHHb, 

I( paccwiTbreaeTca c noMombm ypaanewrtn ~JIR Tennoaoro noToKa. Onpene;leHa TaKXe T~.I~MHB 

BblTCCHeHIIR. 3rd ae,lM',MHa HajlReTCIl Orp,,lIaTeflbHOti a C:,yqaC 30CTaTOqHO CHJlbHOr'o Harpeaa. 


