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Abstract—The effect of buoyancy forces on the steady, laminar, plane flow over a horizontal plate is
investigated within the framework of a first-order boundary layer theory, taking into account the
hydrostatic pressure variation normal to the plate. An exact similarity solution is given for the case of a
wall temperature that is inversely proportional to the square root of the distance from the leading edge.
Remarkably, such a solution does not exist if the buoyancy parameter is smaller than a certain critical
value, which is negative (decelerated flow) but not yet small enough to satisfy the separation criterion of
vanishing shear stress at the wall. Although the wall temperature is different from the free-stream
temperature, there is no local heat transfer at the wall except in the singular point at the leading edge.
The total heat transfer is finite, independent of the plate length, and is calculated by applying the heat flux
equation. The displacement thickness is also given. It is negative if the plate is heated sufficiently strongly.

NOMENCLATURE
Ar, Archimedes number, equation (4);

p specific heat capacity;

£, reduced stream function, equation (10);
g, gravity constant;

K, buoyancy parameter, Ar/\/ﬁ ;

L, value of x where T, — T,, = T*;

I, plate length;

0, Landau’s order symbol;

P, dimensionless pressure difference,

equation (2);
Pr, Prandtl number;
D, pressure;
Q, heat exchanged between plate and fluid;
Re,  Reynolds number, u L/v;
St, Stanton number, equation (17);
T, temperature;
T*, characteristic temperature difference
between plate and free stream ;
dimensionless velocity components,
equation (2);
u,v, velocity components in x,y-directions;

X,Y, dimensionless Cartesian coordinates,
equation (2);
x,y, Cartesian coordinates.
Greek symbols
B, thermal expansivity;
o*, displacement thickness
n, similarity variable, equation (10);
b, (T-T, )T,
3, reduced temperature difference,
equation (10);
v, kinematic viscosity ;
P, density;
v, dimensionless stream function, equation (6).
Subscripts
w, at the wall;

00, in the free stream.

1. INTRODUCTION

IN crassicAL boundary layer theory, body forces
such as buoyancy forces are taken into account only
with respect to their tangential component. Force
components normal to the surface are neglected as
higher-order terms, with the result of no pressure
variation across the boundary layer.

There are, however, flow phenomena which can-
not adequately be described by means of the classical
boundary layer equations. Examples are the bending
of a hot, non-vertical jet in a gravity field, and the
influence of buoyancy forces on the flow over a
heated or cooled horizontal plate. In the latter
problem the body forces normal to the surface may
even result in separation of the boundary layer flow.

A possible way of attacking problems of that kind
is provided by second-order boundary layer theory
[1]. The normal component of the buoyancy force,
like streamline curvature and displacement, contri-
butes to a second-order pressure gradient normal to
the surface. Obviously, this perturbation theory with
respect to large Reynolds numbers is only correct if
the buoyancy term remains small in comparison with
the first-order terms. Since the buoyancy term is
connected with a dimensionless parameter (Froude
number or Archimedes number), and since this
parameter is independent of the Reynolds number,
the assumption of a sufficiently small buoyancy term
is not always satisfied. Furthermore, for free jets as
well as for the boundary-layer at a horizontal plate,
the relative importance of buoyancy forces as
compared to inertia forces typically increases with
increasing distance from the orifice or leading edge,
respectively. As a consequence, the perturbation
procedure breaks down at a certain distance down-
stream, as can be seen, for instance, by inspection
of the solutions presented in [1].

In the particular case of a curved free jet the
complications involved with the second-order-
boundary-layer theory can be evaded by applying
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the conservation equations in integral form and
using ad hoc assumptions for the velocity and
temperature profiles (integral method [2, 3]). As far
as the boundary layer flow over a horizontal plate is
concerned, however, the pressure variation normal to
the wall is essential for a representation of the
buoyancy effects. If, in this case, the buoyancy term is
large as compared with the curvature term, a
modification of the first-order boundary layer theory
is necessary and possible.

Approximate solutions of the modified first-order
boundary layer equations have already been ob-
tained by several investigators. Perturbation series in
terms of the distance from the leading edge [4-7] are
valid only for small buoyancy effects and are
therefore subject to the same limitations as the
results of the second-order boundary layer theory
[1]. Hieber’s work [7] contains also expansions for
very large distances from the leading edge (buoyancy
dominated region). The limiting cases of very small
and very large Prandtl numbers have been studied
by the method of matched asymptotic expansions
[8]- Most recently, approximate solutions for quite a
large range of the buoyancy parameter have been
obtained by local similarity and local non-similarity
methods [9]. Apparently, exact solutions are not
available so far. Tt is the purpose of this investigation
to fill that gap and give an exact similarity solution.

2. BASIC EQUATIONS
Consider a horizontal flat plate aligned parallel to
a uniform free stream with velocity u_, density p_,
and temperature T,,. The plate is maintained at a
certain temperature 7, which may depend on the
longitudinal coordinate x according to the relation

T,—T, = T*0,(x/L), with0,(1)=1. (1)

T* represents a characteristic temperature difference
between plate and free stream, and L is the value of
the x-coordinate where T,—T, = T* If the wall
temperature is constant, L can be chosen arbitrarily.

The flow over the plate is considered to be plane,
laminar, and steady. Constant transport coefficients
are assumed, and the Boussinesq approximation is
applied.

A Cartesian coordinate system x, y is used with the
origin at the leading edge of the plate, and the
velocity components in x- and y-direction are
denoted by u and v, respectively. Furthermore, the
dimensionless variables,

X =x/L; Y= /ReyL;
U=uu,, V= V/’/}Q;v/um; 2)
0 =(T=T,)NT*; P=(p=py)pis,
are introduced, where Re = u, L/v is the Reynolds
number and the pressure is referred to p,. ie. the
hydrostatic pressure in the undisturbed fluid. Apply-
ing now the boundary layer approximation in the

common manner but with the modification that the
pressure varies across the boundary layer and is
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equal to the hydrostatic pressure in the temperature-

disturbed fluid, the following boundary layer
equations are obtained:
au N ov 0- N
ox oy T (%2)
y(‘:U+V(7U+€'P _EZU ) (3b
o0X &Y ox  ev?’ )
¢P
— = K#; (3¢)
cY
a0 a0 1 &%
U + V= . 3d
oX aY  Proy? (3d)

Pr stands for the Prandtl number, and the buoyancy
parameter K is related to the Archimedes number Ar
according to

K = Ar/\/Re, Ar=gLB, T*u2, (4)

where ¢ is the gravity acceleration, and 8, is the
thermal expansivity of the fluid in the undisturbed
state. The signs in equation (3c) have been chosen for
the flow above the plate; if the flow below the plate
were considered K should be replaced by —K in
equation (3c).

The boundary conditions in dimensionless form
are

U=V=0,0=0,X),
U=1,0=P=0,

onY=0,X>0; (5a)

as Y- oc. (5b)
Boundary layer theory is based on an asymptotic
expansion for Re — cc. Since Ar is an independent
parameter, the following cases are to be
distinguished:

I. Ar = O(1): The right-hand side of equation (3c)
is of order O{Re™'?), ie. of the same order of
magnitude as the second-order terms stream-line
curvature and displacement. Hence buoyancy effects
can be—and should be—included in a second-order
boundary layer theory; see [1].

1. Ar — 2o such that K — 0: The right-hand side
of equation (3c) is very large compared with the
second-order boundary layer terms but very small
compared with the first-order terms. This case is
included in the second-order boundary layer theory
[1]

III. Ar - o0 such that K = O(1): The right-hand
side of equation (3c) is part of a first-order boundary
layer theory. It is this case which is to be considered
in the present paper.

IV. Ar — oo such that K — oo: Free convection is
dominant. The correct solution has been given in
[10].

If the wall temperature is constant, the boundary
conditions do not contain any characteristic length.
In this special case the length L can be chosen such
that K = 1. With this choice of L, the regime of
equal importance of free and forced convection is
given by X = O(1). The case of constant heat flux at
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the plate surface can be treated in an analogous
manner. Since neither of the two problems is
accessible to an exact similarity solution we will not
go into further details here.

3. SIMILARITY SOLUTION

The continuity equation (3a) is satisfied by
introducing a stream function i with:

U=y, V=—yx (©)
Subscripts X and Y indicate partial derivatives.
Furthermore the pressure is eliminated by integrat-
ing the normal momentum equation (3¢) with
respect to Y and using the boundary condition P =0
as Y — oc. From the tangential momentum equation
(3b) and the energy equation (3d) we obtain the
following system of equations for Y and 6:

0

Uy —Wxyy—K J O0xdY = Yyyy;  (7a)
v
1
'/’Ygx"l//xa,y = 9YY~ (7b)
Pr
The boundary conditions are:
Y=yy=0,0=0,X), onY=0,X>0; (8a)
Yyy=1,6=0, as Y — oo. (8b)

Looking now for similarity solutions by one of the
well-known methods (see e.g. [11, 12]) we find that a
similarity solution is possible if the wall temperature
distribution is of the form

0, = X142 )
In this case the similarity transformation
— X~ 1,’2;
1’12 ' [4 (10)
Y=X" (), 0=0,30),

yields the system of equations

2"+ [ +Knd = 0; (I1a)

2
— ¥+ ¥+13=0, (11b)
Pr
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where primes denote differentiation with respect to the
similarity coordinate . From the boundary conditions
(8a) and (8b) we obtain

F0)=f{0)=0, f(o)=1; (12a)
30 =1; (12b)
Hoo) = 0. (12¢)

Note that not only the partial derivatives have been

reduced to ordinary derivatives but also the integral

appearing in equation (7a) has been eliminated.

Equation (11b) can be integrated at once. Using the

boundary condition (12¢) we obtain
2 F+f9=0 (13)
Pr T

This first-order differential equation can be formally

integrated to give

. Pr (M
9= exp(—; fdn>,
4]

where the boundary condition (12b) has already been
satisfied. From the numerical point of view, however, it
is preferable to use equation (13) instead of
equation (14).

(14)

4. NUMERICAL RESULTS AND DISCUSSION

The system of ordinary differential equations (11a)
and (13) subject to the boundary conditions (12a)
and (12b) has been solved numerically by two
different methods. Figures 1 to 3 show results which
have been obtained by the common shooting
method. The case Pr =1 has also been investigated
by the method of parametric differentiation (see e.g.
[12,13]). In general, the results of both methods
agreed satisfactorily, but when using the method of
parametric differentiation for negative values of K
(corresponding to an adverse pressure gradient) an
extremely small step size was necessary in order to
obtain the required accuracy.

0.8 b Pr=20.5
1.0
— 2.0
0.6 —
—_~
Q —
-~
N 4
A 0 a=-0.0577
[— b=-0.0787
0.2 b c=-0.1099
RR
0.0 1 T Y VR S N TR N T SN
-0.7\ 0 0.1 0.2 0.3 0.4 0.5
c b a K

F1G. 1. Dimensionless wall shear stress, f”(0), as a function of the buoyancy parameter K = Ar/\/Re for
various Prandtl numbers. For Pr = 0.5, 1.0, and 2.0, respectively, there are no solutions for K-values
smaller than the critical values —0.0577, —0.0787, and —0.1099.
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F1G. 2. Tangential velocity profiles as a function of the
similarity variable n for various values of the buoyancy
parameter K.
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FiG. 3. Temperature profiles as a function of the similarity
variable n for various values of the buoyancy parameter K.

Figure 1 shows f”(0), which is proportional to the
wall shear stress, as a function of the buoyancy
parameter K for three different Prandtl numbers. At
K = 0 (no buoyancy) the Blasius value f"(0) = 0.332
is obtained, of course. If K > 0 (i.e. plate temperature
larger than free-stream temperature) there is a
favorable pressure gradient above the plate due to
buoyancy effects and the wall shear stress is larger
than in the non-buoyant case. If K <0 (i.e. plate
temperature smaller than free-stream temperature)
the opposite is true.

One might expect that at a certain negative value
of K the separation condition f”'(0) =0 would be
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satisfied. This is not the case, however. It can be seen
from Fig. 1 that below a certain critical value of K
there is no similarity solution of the boundary layer
equations as used in this paper. The critical values
depend on the Prandtl number and are, according to
our calculations, given by K = —0.0577, —0.0787,
and -0.1099 for Pr= 0.5, 1.0, and 2.0, respectively.
It appears that these results of an exact solution
explain why convergence of the truncation method
used in [9] could not be attained for Gr./Re3/?
smaller than —0.03, where Gr, and Re, are,
respectively, the local Grashof and Reynolds
numbers.

Typical velocity and temperature profiles are
shown in Figs. 2 and 3, respectively. The Prandtl
number is equal to 1 in all cases. As far as the
negative value of K is concerned, the velocity and
temperature profiles just before breakdown of the
similarity solution are given.

It is interesting to note that $'(0) = 0 for all values
of K, cf. Fig. 3. This result, which follows directly
from equation (13) together with the boundary
condition (12a), indicates that there is no local heat
transfer at the plate surface for all X > 0. Neverthe-
less, although dissipation has been neglected, the
temperature of the fluid is changed during the flow
process. The paradox is resolved by recalling that the
similarity solution requires a singular behaviour of
the wall temperature at X = 0, cf. equation (9). Thus
all the heat necessary to change the fluid temperature
must be transferred in the singular point X =0,
which is the leading edge of the plate.

Consider a plate of length ! (not to be confused
with L, ie. the characteristic length of the wall-
temperature distribution). In order to circumvent the
difficulties linked to the singularity at the leading
edge the total heat transfer Q,, is determined with the
help of the heat flux equation

o

T-Todedy. (15)

where ¢, is the specific heat capacity at constant
pressure. Introducing the dimensionless variables of
equation (2) and applying the similarity transfor-
mation (10), we obtain the relation

JReSt = J 8/ dn = const, (16)
0

where the Stanton number

St = Qu/p e, T*L, (17)
is referred to the characteristic length of the wall-
temperature distribution. According to equation (16)
the Stanton number is independent of the plate
length I, thereby confirming the statement that the
total heat transfer takes place at the leading edge.
Numerical results for the Stanton number are shown
in Fig. 4,
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FIG. 4. Total heat transfer at the plate (Stanton number St) as a function of the buoyancy parameter K
for various Prandt] numbers.
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FiG. 5. Effect of buoyancy parameter K and Prandtl number Pr on the displacement thickness 8*.

Finally, the displacement thickness * can be
calculated from the relations

o* = r (1 - i)‘i»" - /K JX [1=f"(m)]dn
0 “30 uoo 0
- /;l lim [7—f(]. (18)

The limit value is given in Fig. 5. It is interesting to
note that the displacement thickness is negative for
relatively large values of the buoyancy parameter K,
i.e. if the plate is heated sufficiently strongly. This is a
consequence of local velocities that are larger than
the free stream velocity, cf. the velocity profile for
K =0.51in Fig. 2.
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UNE SOLUTION DE SIMILITUDE POUR LA CONVECTION MIXTE SUR UNE PLAQUE
HORIZONTALE

Résume—On étudie Peffet des forces d’Archiméde sur 'écoulement permanent, laminaire et plan sur une
plaque horizontale, dans'le cadre d’une théorie de couche limite du premier ordre, prenant en compte la
variation de pression hydrostatique normalement a la plaque. Une solution de similitude exacte est
donnée dans le cas d'une température de paroi inversement proportionnelle 2 la racine carrée de la
distance au bord d'attaque. Une réelle solution n’existe pas si le paramétre de convection naturelle est
inférieur & une valeur critique laquelle est négative (écoulement décéléré), mais pas suffisamment petit
pour satisfaire le critére de séparation, d’annulation de la contrainte 4 la paroi. Bien que la température
pariétale est differente de celle de I'écoulement libre, il n’y a pas de transfert thermique local 4 la paroi, sauf
au point singulier du bord d’attaque. Le transfert thermique total est fini, independant de la longueur de
la plaque, et il est calculé par application de I'équation du flux thermique. On donne aussi P'épaisseur de
déplacement. Elle est negative si la plaque est chauffé suffisamment fortement.

EINE AHNLICHKEITSLOSUNG FUR DIE STROMUNG LANGS EINER HORIZONTALEN
PLATTE BEI KOMBINIERTER ERZWUNGENER UND FREIER KONVEKTION

Zusammenfassung—Der FinfluB statischer Auftriebskrélfte auf die statiopére, laminare, ebene Stromung
langs einer horizontalen Platte wird im Rahmen einer Grenzschichtheorie erster Ordnung untersucht,
wobei die hydrostatische Druckidnderung normal zur Platte zu beriicksichtigen ist. Eine exakte
Ahnlichkeitsidsung wird fiir den Fall angegeben, daB sich die Wandtemperatur umgekehrt proportional
zur Wurzel aus dem Abstand von der Vorderkante dndert. Bemerkenswerterweise existiert eine solche
Losung nicht, wenn der Auftriebsparameter kleiner als ein bestimmter kritischer Wert ist ; dieser kritische
Wert ist negativ (verzigerte Stromung), aber noch nicht hinreichend klein, um das Abldsekriterium
verschwindender Wandschunspannung zu erfiillen. Obwohl sich die Wandtemperatur von der
Temperatur der ungestorten Stromung unterscheidet, gibt es keinen Ortlichen Wirmeibergang an der
Wand, ausgenommen den singuliren Punkt an der Vorderkante. Der gesamte Wirmeiibergang ist
endlich, unabhingig von der Plattenlidnge und wird mittels der Wirmestromgleichung berechnet. Auch
die Verdringungsdicke wird angegeben. Sie ist negativ, wenn die Platte hinreichend stark geheizt wird.

ABTOMOJAE/NBHOE PEMIEHHE 3AJAYU O CMEWAHHOM CBOBOJHON M
BBIHYXIEHHOW KOHBEKUHU HA MOPH3IOHTAJIBHONM TUIACTUHE

AnnoTauns — B npuGminkenuu Teopuu NOTPAHHYHOrO CHOR NEPBOTO NOPHAKA HCCHEAYETCH BIHAHHE
NOABEMHbBIX CHJI HA CT4LHHOHAPHOE, JJAMHHAPHOE, [JIOCKOE TEYEHHE HA TOPH3OHTANBLHON MIACTHHE
C YY4ETOM M3IMEHEHHS TMAPOCTATHYECKOTO /ABIEHHS MO HopManW Kk naactude. Haiinewo tounoe
aBTOMO/E/ILHOE PEIICHUE [T Clydas. KOTAa 3HAYEHHE TEMMEPATYPhl CTEHKM H3IMeHseTcs o0paTHO
IPONOPLIMOHATIBHO KOPHIO KBa/IPATHOMY PaccTOsHHA OT nepeaHeit kpomku. Cieayer oTMETHTb, 4TO
TAKOE pPEeLIEHME HE ABJACTCH CNPABCAIMBBLIM B TOM CJIYYAE, €C/IM BEAMYUHA CBODOIHOKOHBEKTHBHOIO
AapaMETPa MEHBIIE ONPE/ICACHHOTO KPHTHYECKOIO 3HAYCHUA (32TOPMOKEHHOE TEYCHME), HO HE CTOJb
MajibiM, 4TODBI YAOBNETBOPATL KPHTEPHIO OTPHIBA NOTOKA NPH CTPEMSILEMCS K HY.1HO HANPOKCHHH
caBMra Ha cTeHke. XOTS TEMIEPaTypa CTEHKH OTJIHYHA OT TeMuepatypsl cBoBOAHOTO HOTOKA.
NOKaTbHBIR TEMIOOOMEH HA CTEHKE OTCYTCTBYET 33 MCKJIIOYEHHEM CHHIYJIAPHOH TOMKHM Ha nepeaHeit
KpoMKe, BenusHa CyMMAapHOro Tels1oo0MeHd ABJISETCS KOHEHHOM, HE 3aBUCHT OT JUIMHbBL MJIACTHHbBI
M PACCHHTBIBACTCA C TIOMOWbK YPaBHEHUS JUIS TEN:0BOTO NoTOKAa. OnpenesieHa Takxe TO.UWMHA
BBITECHEHHS. DTa BETUYMHA HBSIAETCH OTPHUATENLHON B C.lyHae JOCTATOYHO CHIBHOIO HATPEBA.



